
Hopf instantons, Chern-Simons vortices and Heisenberg ferromagnets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 3079

(http://iopscience.iop.org/0305-4470/34/14/313)

Download details:

IP Address: 171.66.16.95

The article was downloaded on 02/06/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 3079–3082 www.iop.org/Journals/ja PII: S0305-4470(01)19876-8

Hopf instantons, Chern–Simons vortices and
Heisenberg ferromagnets

P A Horváthy
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Abstract
The dimensional reduction of the three-dimensional model (related to Hopf
maps) of Adam et al is shown to be equivalent to either (i) the static, fixed-
chirality sector of the non-relativistic spinor-Chern–Simons theory in 2 + 1
dimensions or (ii) a particular Heisenberg ferromagnet in the plane.

PACS numbers: 1110L, 0365, 1115

1. Scalar Chern–Simons vortices and Hopf instantons

In the non-relativistic Chern–Simons model of Jackiw and Pi [1], one considers a scalar field
� which satisfies a second-order nonlinear Schrödinger equation,

iDt� = DiD
i

2m
� − g|�|2� = 0 (1.1)

while the dynamics of the gauge field is governed by the Chern–Simons field/current identities.
When the coefficient g is minus or plus the inverse of the Chern–Simons coupling constant κ ,
static solutions arise by solving instead the self-duality equations,

D±� ≡ (D1 ± iD2)� = 0 (Dk = ∂k − iAk) (1.2)

supplemented with one of the Chern–Simons equations, namely

κB ≡ κεij ∂iA
j = −� (1.3)

where � = �∗� is the particle density. Expressing the gauge potential from (1.2) one finds that
the other Chern–Simons equations, κEi ≡ −κ

(
∂iA

0 + ∂tA
i
) = εij J j , merely fix At . Then,

inserting into (1.3) yields the Liouville equation, whose well known solutions provide us
with Chern–Simons vortices which carry electric and magnetic fields. The self-dual solutions
represent furthermore the absolute minima of the energy, cf [1].
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In a recent paper, Adam et al [2] consider instead a massless two-spinor � =
(

�+

�−

)
on

ordinary three-space, coupled to a (Euclidean) Chern–Simons field. Their field equations read

Diσi� = 0 (1.4)

�†σi� = Bi. (1.5)

Note that this model only contains a (three-dimensional) magnetic and no electric field. These
authors also mention that assuming independence of x3 and setting A3 = 0, their model will
reduce to the planar self-dual Jackiw–Pi system, (1.2), (1.3). The third component of (1.5)
requires, in fact,

|�+|2 − |�−|2 = B. (1.6)

The two other components imply, however, that either �+ or �− has to vanish. Therefore, the
reduced equations read finally as one or the other of

D±�∓ = 0 B = ±|�±|2 and �∓ = 0. (1.7)

Fixing up the sign problem by including a Chern–Simons coupling constant κ , these equations
look indeed formally the same as in the self-dual Jackiw–Pi case. They have, however, a slightly
different interpretation: they are purely magnetic, while those of Jackiw and Pi have a non-
vanishing electric field. Let us underline that the equations (1.7) differ from the second-order
field equation (1.1).

2. Spinor vortices

Here we point out that the model of Adam et al reduces rather more naturally to a particular
case of our spinor model in 2 + 1 dimensions [3]. In this theory, the four-component Dirac
spinor with components �−, χ−, χ+ and �+ satisfies the Lévy-Leblond equations [4]

(�σ · �D) � + 2m χ = 0
Dt � + i(�σ �D) χ = 0

(2.1)

where � and χ are two-component ‘Pauli’ spinors � =
(

�−
�+

)
and χ =

(
χ−
χ+

)
. This

non-relativistic Dirac-type equation is completed with the Chern–Simons equations

B = (−1/κ)
(|�+|2 + |�−|2)

Ei = (1/κ)εij Jj Jj = i
(
�†σjχ − χ†σj�

)
.

(2.2)

In the static and purely magnetic case, At = 0, and choosing χ+ = χ− = 0, the second
equation in (2.2) is identically satisfied, leaving us with the coupled system

D+�− = 0

D−�+ = 0
B = (−1/κ)

(|�+|2 + |�−|2).
(2.3)

Choosing a fixed chirality, �− ≡ 0 or �+ ≡ 0, yields furthermore one of the two systems

D±�∓ = 0
B = (−1/κ) |�±|2 (2.4)

which, for κ = 1, are precisely (1.7). For both signs we obtain the Liouville equation; regular
solutions were obtained for �+ when κ < 0, and for �− when κ > 0. They are again purely
magnetic, and carry non-zero spin1.

1 The same self-dual equations arise in the relativistic model of [3].
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It would be easy keep both terms in (1.7) by allowing a non-vanishing (but still x3-
independent) A3. Then one would lose the equations D±�∓ = 0, however. The impossibility
of having both components in (2.3) but not in (1.7) comes from the type of reduction
performed: while for spinors one eliminates non-relativistic time, (1.7) originates from a
spacelike reduction. The difference is also related to the structure of the Lévy-Leblond
equation (2.1), which can be obtained by lightlike reduction from a massless Dirac equation
in four dimensions, while (1.4) arises by spacelike reduction [3].

It is interesting to observe that eliminating χ in favour of � in the Lévy-Leblond
equation (2.3) yields

iDt� =
[
− 1

2m
DiD

i +
1

2mκ
(|�+|2 + |�−|2) σ3

]
�. (2.5)

For both chiralities, we obtain hence a second-order equation of the Jackiw–Pi form (1.1), but
with opposite signs, i.e. with attractive/repulsive coupling.

It is worth noting that the minima of the energy correspond to the coupled equations (2.3)
and not to (2.4). In fact, the identity

| �D�|2 = |D+�−|2 + |D−�+|2 − 1

2mκ
|�|2�†σ3� + surface terms

shows that the energy of a field configuration,

H =
∫ {

1

2m
| �D�|2 +

1

2mκ
|�|2�†σ3�

}
d2�x

is actually

H = 1

2m

∫
d2�r {|D+�−|2 + |D−�+|2

}
(2.6)

which is positive definite, H � 0, provided the currents vanish at infinity. The ‘Bogomolny’
bound is furthermore saturated precisely when (2.3) holds. Its solutions are therefore stable.
Hence, it is (2.3) that should be considered as the true self-duality condition.

3. Heisenberg ferromagnets

The relative minus sign of the component densities in the ‘provisional’ formula (1.6) differs
from ours in (2.3), and is rather that in the two-dimensional Heisenberg model studied by
Martina et al [5]. Here the spin, represented by a unit vector S, satisfies the Landau–Lifschitz
equation ∂tS = S × �S. In the so-called tangent-space representation, S is replaced by two
complex fields, �+ and �−, each of which satisfies a (second-order) nonlinear Schrödinger
equation,

iDt�± = −
[
DiD

i + 8|�±|2
]
�± (3.1)

as well as a geometric constraint, D+�− = D−�+. The covariant derivatives here refer to a
Chern–Simons-type abelian gauge field,

B = −8
(|�+|2 − |�−|2)

Ei = 8εij Jj Ji = (
�∗

+Di�+ − �+(Di�+)
∗) − (

�∗
−Di�− − �−(Di�−)∗

)
.

(3.2)

It is now easy to check that in the static and purely magnetic case, these equations can be
solved by the first-order coupled system

D±�∓ = 0
B = −8

(|�+|2 − |�−|2). (3.3)
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For �+ ≡ 0 or �− ≡ 0, we obtain once again the equation of Adam et al. In the general
case, (3.3) leads to an interesting generalization of the Liouville equation: making use of
its conformal properties, Martina et al have shown that it can be transformed into the ‘sinh–
Gordon’ form

�σ = − sinh σ (3.4)

where σ is suitably defined from �+ and �−. Although this equation has no finite-energy
regular solution defined over the whole plane [6], it admits doubly periodic solutions, i.e.
solutions defined in cells with periodic boundary conditions [7]. This generalizes the results
of Olesen [8] in the scalar case. A similar calculation applied to the general SD equations, (2.3),
of our spinor model would yield

�σ = − cosh σ (3.5)

whose (doubly periodic) solutions could be interpreted as nonlinear superpositions of the chiral
vortices in [3].
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